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Observables are treated as tr-homomorphisms of the Borel sets of the real line 
into an orthomodular g-lattice L. By means of corresponding spectral-resolutions 
operations meet and join are defined between observables which endow the set 
of all observables with a lattice structure in case L is or-continuous and which 
give rise to lattices of observables in case L is chosen arbitrarily and the 
observables commute. 

1. I N T R O D U C T I O N  A N D  B A S I C  D E F I N I T I O N S  

Let  B deno t e  the  Borel  sets of  the  real  l ine a n d  L be an o r t h o m o d u l a r  
o '- lat t ice ( the logic  o f  the  q u a n t u m  mechan ica l  system).  Then  an obse rvab le  
is a o ' - h o m o m o r p h i s m  of  B into L (see Va rada ra j a n ,  1968). We  deno te  the  
set o f  all  observab les ,  i.e., the  set o f  all t r - h o m o m o r p h i s m s  o f  B into L, by  
o. There  are  several  a p p r o a c h e s  to cons ide r  for  o or  subsets  o f  o as an  
a lgebra ic  s t ructure.  The  bes t  known  among  these  a p p r o a c h e s  are the  c lass ical  
concepts  o f  ope ra to r - a lgeb ra s  (see Bratel l i  and  Rob inson ,  1979) and  the 
var ious  desc r ip t ions  of  a sum of  two observab les  (see Dvure~enski j ,  1980; 
G u d d e r ,  1965; Va rada ra j an ,  1968). In  this note  we p r o p o s e  a way  to e n d o w  
o or  subsets  o f  o wi th  a la t t ice  s t ructure,  so as to cons t ruc t  obse rvab les  
easi ly  by  fo rming  suprema and  infima of  o ther  observables .  F o r  this  p u r p o s e  
let  C be t h e  set o f  all  l e f t -open  and  r igh t -c losed  intervals  o f  the  real  l ine 
R, i nc lud ing  the e m p t y  set Q:  

c = {(-oo, ~ ] l~  ~ R} u { ~ }  

We cons ide r  m a p p i n g s  a :  C --> L with the  p rope r t i e s  

a ( • )  =0 (1) 
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9 5 2  D o r n i n g e r  

and 
a (  (-~ &) = ~ a ( & )  (2) 

i c I  i ~ I  

& c C and I are countable sets. (Here and in the following the least and 
the greatest elements of  L are denoted by 0 and 1, and n and U mean the 
meet and join of  L and B.) 

Let H be the collection of all mappings a satisfying (1) and (2). Then 
clearly the restriction of an observable of  • to C belongs to H. On the 
other hand, using results of  Catlin (1968) and Dvure~enskij (1980) one can 
verify easily (see Lemma 1). 

a ~ H can be extended to a o--homomorphism of ~$ into L if and only 
if U a ( C )  (i.e., U ~ c  a(A))  exists in L and equals to 1. I f  this is the case 
the extension of a is unique�9 It shall be denoted by 6. Thus o =  
{6[a E H, U a (C)  = 1 }--we agree to write a for the restriction of an observ- 
able ~ to C. 

Now, for a,/3 ~ H we introduce a c~/3 and a u/3, as usual by pointwise 
definition: 

( a n / 3 ) ( a )  = a ( a )  n / 3 ( a )  f o r a  e C 

and 
(a  vo/3)(a) = a ( a )  u / 3 (h )  f o r a  c C 

This definition suggests that we define the meet and join of  observables by 

6 n i l = a n t i  and 6 w fi ~ a w fl 

The main result of  the note is that if L is or-continuous or if 6 and /3 
commute ~ n fi and ~ u / 3  are also observables, and from this we will derive 
the lattice structure of  o and of certain subsets of  o. 

A logic L is called o--continuous if for any ascending chain x~-< x2-< 
�9 �9 �9 and a s L the equation 

a n  U x i = U ( a c ~ x i )  
i i 

holds. 
For all concepts used here but not defined, see e.g., Varadarajan (1968) 

and Gr/itzer (1978). 

2. LATTICES OF OBSERVABLES 

Lemma 1. A mapping a 6 H can be extended to a o ' -homomorphism 
of B into L if and only if U a ( C )  exists in L and equals to 1. I f  this is the 
case the extension 6 of  a is unique�9 

Proof. That the restriction a of  an observable 6 satisfies the condition 
of  Lemma 1 is obvious. To prove the converse define a ( ( - ~ , / ~ ] )  = e~ for 
/~ c R. Then, as it is easy to see, e,  is a spectral resolution in the sense of  
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Catlin (1968), i.e., a mapping e:R~L such that (i) iz~_ v~e~,_<e~; (ii) 
O ,~R  e,  = 0 and ~_J,~a e,  = 1 ; (iii) ['-) ~<~ e~, = e~. As shown by Catlin, the 
existence of  a Boolean sub-o--algebra S of L such that a(C) c S implies 
that a can be extended uniquely to a t r -homomorphism as of B into L with 
as(B) ~ S. Considering another Boolean sub-o--Algebra T with a ( C )  c T 
and taking into account that S c~ T is also a Boolean sub-o--algebra of  L 
such that a(C)c_ S n  T, the application of Catlin's theorem to S, T and 
S c~ T shows that as = aT. Therefore the existence of an arbitrary sub-o-- 
algebra S of  L such that a(C) c S is a sufficient condition for the existence 
of a unique extension of a to a o--homomorphism of B into L. 

In exactly the same way as in the proof  of  Theorem 1.1 in Dvure~enskij 
(1980) one can show that there exists a Boolean sub-o--algebra B~ of L, 
which is generated by the set {a((-c%/z])I /z  ~ R}. �9 

Remark 1. Instead of using half-open intervals and conditions (1) and 
(2) in the definition of a, we could have used open intervals and the duals 
of  the conditions (1) and (2), in which case the dual analogue of Lemma 
1 would have been an immediate consequence of a result in Catlin (1968). 
In respect to standard logics, where it is far easier to form the meet of  
closed subspaces of Hilbert spaces than their join, the author preferred his 
point of  view, which is also indicated in Catlin (1968). 

Define oc = {aIa ~ H, Ua(C)  = 1}. As one can see at once the condition 
Ua(C)  = 1 can be replaced by the condition: ~_.Jx,-~o~ a(h~) = 1 for any real 
sequence (hi) with h~ ~ oo. 

As an immediate consequence of the definition of a we find that the 
algebraic structure (H, c~ ) is a meet-semilattice and that (H, c~, u ) is a 
partial lattice ( u is not defined everywhere). 

Lemma 2. Let L have the property that for any two ascending chains 
al -< a2--- �9 �9 �9 and bl -< b 2 -  < �9 �9 �9 with [._J~ ai = [._Ji b /=  1 also ~_J~ (a~ n bi) = 1. 
Then with a,/3 ~ o~ also a n/3 ~ o~. 

Proof According to the above remarks one has to show that 
U ~ , _ , o ~ a ( h , ) = U ~ _ . ~ / 3 ( h , ) = l  yields U~,_.oo(aC~/3)(h~)=l; yet this is 
guaranteed by the assumptions of  the lemma. 

As a short computat ion shows tr-continuity in a logic L implies that 
for two countable chains {ai} and {bi} in L 

LJi (a, nb~)=(LJi ai) n(~TJ b,) 

and 

This will be of  use in the proofs of  the following theorems. 
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Theorem 1. Let L be o--continuous. Then (o, ca, • ) is a lattice. 

Proof We have to show that (oc, n ,  u ) is a lattice. Since (o~, n ,  w ) 
is a substructure of  the partial lattice (H, n ,  u ) it suffices to prove that 
with a,/3 e oc also a c~/3 and a u/3  e oc. That a ca/3 e o~ follows by Lemma 
2, to see that a u /3  e oc we compute: 

= A (~(;~,) u /3(x , ) )  = O ((~ w/3)(;~,)), 
i i 

according to the definition of  elements of  H and the definition of a u/3, 
and by the o--continuity of  L. Thus condition (2) is satisfied for a u/3. Since 
condition (1) is trivially satisfied t~ u/3 e H~. Because of 

we further obtain a u/3  e o~. �9 

A polynomial  over (H, ca, u ) is a term in elements of  H linked together 
by n ,  u and parentheses such that the result is a well defined element of  
H. E.g., p(a,/3, 7, ~) = ((~ n / 3 ) u  3,)n ( ~ u  a )  with a,/3, 7, S e l l  is a poly- 
nomial over H (see Gr/itzer, 1978). 

The number  of  symbols apart ca, w and parentheses occurring in a 
polynomial  is called the length of the polynomial.  Let A~ = {o~jl j e J} be a 
subset of  oc. Then we denote by A the set { f j l jeJ} .  I f  p ( a l ,  oz2,. . . ,  a , )  is 
a polynomial  over H with al ,  a2, �9 �9  a ,  e A~ we refer to it as a polynomial  
over A~. The term P(fl,  f2, . - - ,  din) will be called a polynomial  over A. 

Theorem 2. Let L be an arbitrary logic and A a set of  pairwaise 
commuting observables; further let P(A) be the set of  all polynomials over 
A. Then all elements of  P(A) are observables, each two of them commute,  
and (P(A),  n ,  u )  is a lattice. 

Proof Since all f c A are pairwaise commuting, there exists a Boolean- 
sub-o--algebra S of L such that f ( B ) c , S  for all f ~ A (see Varadarajan, 
1968). Hence by the definition of n and w and by the theorem of Catlin 
(1968) mentioned above /~(B)__c_ S for all /fie P(A)c~ o. From this we can 
conclude (Varadarajan, 1968) that the elements tfie P(A) ca o are pairwise 
commuting. 

Now we show by induction on the length of the polynomials of  P(A~) 
that P(Ac) c_ o~ where from we obtain that P(A) ~ o. Polynomials over Ac 
of length 1 are just the elements of  A~.--Now let us assume that for each 
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polynomial  of  length m -< n - 1 our assertion is true and let p ( a l , . . . ,  ak) 

be a polynomial  over Ac of length n. Then either p =Pl  up2  or p =Pl  c~p2 
with Pl,P2 each being polynomials of  length _ < n - l ,  hence pl, p2~oc. 
p~(B) c_ S and p2(B) c_ S. Since S is a Boolean sub-g-algebra of  L any two 
elements of  S commute,  where form it follows that S is g-continuous 
(Varadarajan, 1968). Applying Theorem 1 to t r -homomorphisms of B into 
S we obtain that p~up2 and plc~p2 are t r -homomorphisms of B into S, 
hence in either case p ~ o~. That (P(A),  c~, u ) is a lattice is a consequence 
of  the fact that (P(A~), c~, u )  is a substructure of  (H, c~, u ) .  �9 

Remark 2. Dealing with commuting observables one can show that it 
suffices to make sure that they commute on C, that is to say: if a ( h )  
commutes wi th /3 (~)  for all h,/~ ~ C, then c~ and /3  commute. 

The definition of meet and join of two observables ~,/g makes it very 
easy to determine 6 u / g  and c~ c~/3 in case the "spectral-resolutions" a and 
/3 of  6 a n d / 3  are known. I f  this is not the case, e.g., if the observables in 
question are discrete and they are given by their values at one-element 
subsets of  R, then it is also not complicated to find ~ c~/~ and c~ u/3:  If, 
for example 6 and /3  commute,  then one can show easily that for h ~ R: 

and 

where {,~} are the one-element subsets of  R with a({,~i}) o r /3 ({~})  S0 .  
Similar formulas hold for noncommuting discrete variables if L is or- 
continuous. 
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